
1. Getting Around
1. In a terminal window, list the files in the root directory. The root directory is referred to with a

single slash (/).

2. Create a new folder below your home directory using the mkdir command.

3. Remove the folder using the rmdir command. Note that the rmdir will fail for directories
that aren’t empty. To remove a directory that isn’t empty, use the rm -rf command instead.

4. If you are using OS X, open a Finder window showing your home directory using the open
command. 
 
If you are using Windows, open an Explorer window showing your home directory using the
explorer command.

Getting Help on OS X
OS X comes with an extensive set of documentation “manuals” known as man pages. You use
the man command to access the man pages. You can learn about the multitude of options
available for various commands in the terminal by typing man followed by the name of the
command you want to learn about. For example, you’d type man ls (and press return) to
access the documentation for the ls command. The man command presents documentation
one screen at a time, in the same way that output is presented using the more command. You
can press the spacebar to view the next page and q to exit the man command.

If you’d like to view the documentation in a more visually pleasing style in the Preview
application, you can use one of the options for the man command in conjunction with what is
known as a pipe. A pipe lets you take the output of one command and use it as the input for
another command. To view the help for the ls command in this manner, you would type the
following (the vertical | is referred to as the pipe character.)

man -t ls | open -f -a /Applications/Preview.app

It is more common (and faster) to just view the man pages in the terminal.

Getting Help in Git BASH on Windows
Many, but not all, commands that come with the Git BASH environment have built-in help that
can be accessed via the --help option. For example, to get help on the ls command, you
could type ls --help and press return. If you want to view the help documentation one
screenful at a time, you can use what is known as a pipe. A pipe lets you take the output of one
command and use it as the input for another command. So, to view the help for ls one screen
at a time you could use the following (the vertical | is referred to as the pipe character.)

�1

ls --help | less

When viewing the help content in this manner, you can press the spacebar to view the next
page and q to exit the command.

�2

2. Hello World
1. Install Python 3 on your system using the procedure demonstrated in the Hello World video.

2. In a terminal window, launch a Python 3 session and use the print statement to display
the words "hello world"

3. Use a single print statement to print the values 1, 2, and 3 on separate lines. The output
should appear like this 
 
1  
2  
3  
 
Hints:  
 
Consult the help documentation for print in a Python session or using the separate help
content installed with Python. Specifically look for help related to the sep argument. 
 
The newline character is specified as '\n'

�3

3. Interactive Use and Saving
Your Work
1. Launch Python in a terminal session and use it to perform some simple calculations

(addition, multiplication)

2. Define a function that takes no arguments and prints the word "demo" when the function is
called.

3. The print function can take multiple arguments separated by commas. When given
multiple arguments, the print function will print all arguments separated by spaces. For
example, if you were to execute print("hello", "world"), the result would be the
following 
 
hello world  
 
Define a function called hello that has a single parameter called name. The function should
take advantage of the print command's support for multiple arguments to print the word
hello followed by a space followed by the name passed into the function. For example, if
you were to invoke hello("george") the result would be  
 
hello george  
 
Note: This is the same behavior demonstrated in the video but in the sample function shown
there, the print function was called as print("hello " + name). It is often the case that
more than one approach is available to achieve a particular result.

4. Install the text editor for your platform (TextWrangler on OS X, Programmer's Notepad on
Windows) per the instructions shown in the video

5. Using the text editor installed in step 4, create a new file called demo.py in your Desktop
folder. Enter the following code into demo.py and save the file. 
 
from datetime import date  
print(date.today())  
 
In a terminal window, navigate to your Desktop folder and execute the following command: 
 
On Windows: 
 
python demo.py  
 
On OS X (see note below):  
 
python3 demo.py

�4

This is a common way of running Python programs in a Bash shell (or similar) environment.

Another way that is a perhaps a bit more convenient for programs that are run frequently, is to
use a special comment on the first line of a Python file that looks like this:

On Windows:

#!/usr/bin/env python

On OS X (see note below):

#!/usr/bin/env python3

Once this comment has been added, you then give the script "execute" permission by typing the
following command

chmod +x demo.py

You can then run the script in a Bash shell as follows:

./demo.py

The above command assumes that you are running the script in the same directory as the script
itself. You would use the full path to a script to run it from another directory. For instance, if the
demo.py script is stored in the Desktop folder of the user programmer, you could invoke the
script as follows

~programmer/Desktop/demo.py

NOTE: The demo.py program will run using Python 2 or Python 3, but you should get in the
habit of using python3 on OS X 

�5

4. Data Types, Operators, and
Variables
1. Launch Python in a terminal session and use it to explore integer, float, and string data

types. Exercise some of the operations available: addition, subtraction, multiplication,
division, floor division, modulus, exponentiation and absolute value.

2. Define a function called square that takes a single numeric argument and returns the value
of the argument squared. So, for example, if you were to call square(10), the function
would return the value 100. Use the ** operator to compute the result that is returned.

3. Write a function called uppify (see note below) that has two parameters named message,
and letter. The purpose of uppify is to return a string that consists of the message
passed in where every occurrence of letter in the message is replaced by the upper case
version of letter. Here's an example of what using uppify could look like  
 
>>> uppify('hello world', 'o')  
'hellO wOrld'  
 
Hint: You'll probably want to use the upper() string method as part of your solution. 
 
Another hint: Consult the documentation on String Methods under Text Sequence Types in
the Library Reference to see what method can be used to replace values in a string.

NOTE: Uppify isn't a real word. I just made it up. Computer programmers can be like that. 

�6

5. Data Collections
1. In a Python session, define a string variable called letters, a list variable called

letters_list, and a tuple variable called letters_tuple as follows 
 
letters = 'abcdefghijklmnopqrstuvwxyz'  
letters_list = list(letters)  
letters_tuple = tuple(letters)  
 
Be sure to perform exercises 2 though 6 in the same Python session. 

2. Examine the contents of letters_list and letters_tuple by typing those variable
names at the Python prompt and pressing return after each name. Note that the list and the
tuple contain all of the characters in the letters string. 

3. Examine the element at index 8 of letters, letters_list, and letters_tuple.  

4. Examine the result of invoking .index('i') on letters, letters_list, and
letters_tuple  

5. Examine the [13:15] slice of each of the variables defined. Note that the slices of the list
and the tuple contain the same letters as the slice of the string. 

6. An optional third argument can be specified when creating a slice from a sequence type.
The third argument specifies the step value for the slice. The step value can be positive or
negative. This is sometimes referred to as extended slicing. Examine the result of the
following extended slices 
 
letters[1::2]  
letters_list[1::2]  
letters_tuple[1::2]  
 
Examine slices [:-2:2] and [::3] for letters, letters_list, and letters_tuple. 

7. Examine the length of letters, letters_list, and letters_tuple using the len()
function. 

8. Define a function called reverse that takes a single parameter called a_string. The
function should return a string containing all of the letters in a_string, but in reverse order.
Example usage  
 
>>> reverse('abc')  
'cba'  
 
One approach: In the body of your function, you may find it helpful to create a list of the
letters in a_string as your first step  
 
Hint: You can use the join method on an empty string to concatenate strings in a list. For

�7

example  
 
>>> ''.join(['a', 'b', 'c'])  
'abc'  
 
Another approach: The reverse of a string can be obtained very efficiently using extended
slicing. 

9. Define a dictionary, topping_costs, which maps pizza toppings to cost in dollars as
follows (Note that in a real application where financial calculations are performed, floats
should not be used to represent monetary values.) 
 
topping_costs = {'extra cheese': 1.00, 'sausage': 1.50, 'pepperoni':
0.75}  
 
Enter the following lines of code  
 
cost = 0  
cost = cost + topping_costs['pepperoni']  
cost = cost + topping_costs['extra cheese'] 
cost = cost + topping_costs['sausage']  
print(cost)  
 

�8

6. Functions
1. Configure the settings for the text editor used on your platform (TextWrangler on OS X,

Programmer's Notepad on Widows.) Consult video number 6 for instructions. 
 
On Windows:  
 
Create the edit command per the instructions in Functions video. Be sure to create the
edit file in the bin directory below your home directory. 

2. Create a folder called Exercises below your home folder or some other location that you
choose. In the Exercises folder, create a new file called circle.py using the edit
command in a terminal window. 

3. In circle.py, define a function called info that takes a single parameter, radius. The
function should print out the diameter, circumference, and area of a circle with the given
radius. For example, if info(10) is called, the following output should be produced  
 
diameter: 20  
circumference: 62.83185307179586  
area: 314.1592653589793  
 
Launch a Python interactive session in the same directory as the circle.py file. Import
circle into the Python session and call the info function with various radius arguments.
Remember that you can use the reload function in the importlib module to reload your
functions module. 
 
Hint: You can use the value of pi located in the math module. 

4. Introduce three more functions in circle.py called diameter, circumference, and
area. Each function should take a single parameter called radius and return its result to
the caller. 

5. Rewrite the info function so that if makes use of the diameter, circumference, and
area functions. Exercise the revised info function in an interactive session. 

6. The sys module provides a mechanism for accessing the command line arguments a user
has supplied when running a Python program. The command line arguments are available
as a list in the sys module's argv property. For example, if you were to execute a Python
program as  
 
python circle.py one two three  
 
then sys.argv would be populated as  
 
['circle.py', 'one', 'two', 'three']  
 

�9

Note that the first element of sys.argv is the name of the script being executed. The
remaining elements are the arguments supplied after the name of the script. The contents of
sys.argv would be populated in the same manner if the script is executed via the #!
mechanism described in exercise 3.5. 
 
Launch an interactive Python session using the command line arguments "- one two
three". Import the sys module and then print the contents of sys.argv. 

7. Add the #! python line to the top of the circle.py file and make it executable per the
instructions in exercise 3.5.  

8. Add in import statement for the sys module near the top of circle.py. At the bottom of
circle.py, add code to invoke the info() function using the argument supplied on the
command line as the radius.  
 
Hint: You'll need to convert the supplied argument to a numeric value before passing it to the
info function. One way to do this, is by using float(). 
 
Now, you should be able to run the circle.py script as follows (assuming that you are
working in the directory that contains circle.py) 
 
./circle.py 10  
diameter: 20.0  
circumference: 62.83185307179586  
area: 314.1592653589793  
 
Note: If you were to execute ./circle.py abcdef, the program will fail due to a
ValueError. Dealing with these sorts of errors is not part of this exercise. 

�10

7. Conditional Logic
1. Modify the code in the circle.py file from the previous exercises to check for the

presence of a radius argument on the command line. If no radius argument is supplied, the
program should print out a help message such as 
 
Please specify a radius value.  
 
If a radius value is supplied, the info function should be called. 
 
Exercise the circle.py script from the command line with and without supplying an
argument for radius. 

2. The input function can be used to gather input from the user. It is used as follows 
 
number = input("Enter a number: ")  
 
When the above code is executed, the user will be prompted to enter a number. When the
user presses the Enter key, the supplied value will be assigned to the variable on the left
side of the equals sign. Note that the input function always returns a string value,
regardless of the name of the variable used in the assignment statement. 
 
Modify the code in circle.py such that the user is prompted to enter a radius if they
don't supply one on the command line. 
 
Exercise the circle.py script from the command line with and without supplying an
argument for radius. 

3. Write a function called weather that has a single parameter called temperature. When
the weather function is called, it should have the following behavior: 
 
If temperature is less than or equal to 32, print "It's freezing." 
 
If temperature is less than or equal to 65, print "You might want to wear a jacket." 
 
If temperature is less than or equal to 85, print "It's not too hot." 
 
For all other cases, print "Looks like a day for short sleeves." 
 
Only one print statement should be executed for any given value of temperature. 
 
You'll probably want to define this function in a new Python module. Exercise the weather
function in an interactive Python session. 

4. Import the circle module into a Python interactive session. Note that you are prompted to
enter a radius when the import is performed. This is not desirable behavior. So, let's fix this. 
 

�11

When a module is loaded by the Python interpreter, a special property called __name__ is
set on the module. For modules that are executed as the top-level scope, such as when
they are executed at the command line, the __name__ property will be set to '__main__'.
Modify the circle.py file such that the logic related to processing of command line
arguments and the invocation of info is only run if it is running as '__main__'.  
 
Import the circle module into a fresh interactive session. You should not be prompted to
enter a radius when the module is imported. 

5. Add a triple-quoted document string to top of the circle.py file. Add a triple-quoted
document string to each of the functions in circle.py. 
 
Import circle into an interactive session and execute the following  
 
help(circle)  
 
Note how the document strings that you entered are presented in the help content. 

�12

8. Looping
1. In the terminal, cd to the directory containing the circle.py module created in previous

exercises. Launch Python and import the circle module. Using a for loop, invoke
circle.area for a range of radius values from 1 to 10. Do the same thing using a while
loop.  

2. Create a new file called utilities.py. In utilities.py, define the functions described
in the table below  
 

 
Import the utilities module into a Python session and exercise each of the functions. 

3. In an interactive session define a dictionary, topping_costs, which maps pizza toppings
to cost in dollars as follows (Note that in a real application where financial calculations are
performed, floats should not be used to represent monetary values.) 
 
topping_costs = {'extra cheese': 1.00, 'sausage': 1.50, 'pepperoni':
0.75}  
 
In utilities.py, write a function called total that accepts a dictionary such as
topping_costs as an argument and returns a tuple with two elements. The first element
in the tuple will be the total cost of the toppings. The second element will be the name of the
most expensive topping. Import or reload the utilities module and exercise the total
function in an interactive Python session.  
 
 

Function Purpose

sum(sequence) Returns the sum of values in a list or tuple.
For example, sum([3, 2, 1]) should return 6.

max(sequence) Returns the maximum value in a list or tuple.
For example, max([3, 2, 1]) should return 3.

min(sequence) Returns the minimum value in a list or tuple.
For example, min([3, 2, 1]) should return 1.

squares(sequence) Returns a list containing each element in the supplied sequence raised to
the power of 2.
For example, squares([3, 2, 1]) should return [9, 4, 1].

�13

9. Exceptions
1. In a terminal, navigate to the directory that contains the circle.py file that you created in

a previous exercise and execute the following  
 
./circle.py x  
 
This should result in an exception since x is not a valid number. 
 
Modify the code in circle.py to guard against these sorts of exceptions and display the
following message if an invalid number is supplied: 
 
You must supply a valid number for radius. 

�14

10. Classes
1. Create a new Python module called shapes.py. In shapes.py, define a class called

Shape that has an area method and perimeter method, both with empty
implementations. 

2. Read the description of object.__str__ in the Python documentation. The Python print
function uses a class's __str__ implementation when it prints an object. Add the following
__str__ implementation to the Shape class 
 
def __str__(self):  
 return '{name}: area={area}, perimeter={perimeter}'.format( 
 name=self.__class__.__name__,  
 area=self.area(),  
 perimeter=self.perimeter()) 
 
The above implementation makes use of the format method on a string. When using this
method, each keyword surrounded by curly braces in the string being formatted, is replaced
by the value assigned to the keyword argument passed to format. So, in the code above, the
{name} in the string is replaced by the value passed in for the name parameter. Likewise,
substitutions are performed for {area} and {perimeter}. Consult the documentation for
str.format for further details. 

3. Define a subclass of Shape called Rectangle. The Rectangle class should have the
following initializer method  
 
def __init__(self, width, height):  
 self.width = width  
 self.height = height  
 
Implement area and perimeter for the Rectangle class. 

4. Define a subclass of Rectangle called Square. Implement Square in such a way that
only the __init__ method, which should take a single width argument, is implemented.
The __init__ method for Square should invoke the __init__ method for Rectangle. 

5. Define a subclass of Shape called Circle. Implement __init__ for the Circle class that
makes use of a single radius parameter. Implement area and perimeter for the Circle
class. 

6. Define a class called ShapeCollection that is used to hold any number of Shape objects.
Implement methods add and remove on ShapeCollection. These methods should take
a single argument and allow for adding and removing shapes from the collection. 

7. Define an area method on ShapeCollection that returns the total area of all shapes
contained in the collection. 

�15

8. Define a perimeter method on ShapeCollection that returns the total perimeter of all
shapes contained in the collection.

�16

